skip to content

Conservation laws and Euler operators

Presented by: 
Peter Hydon University of Kent
Wednesday 11th September 2019 - 14:00 to 15:00
INI Seminar Room 2
A (local) conservation law of a given system of differential or difference equations is a divergence expression that is zero on all solutions. The Euler operator is a powerful tool in the formal theory of conservation laws that enables key results to be proved simply, including several generalizations of Noether's theorems.  This talk begins with a short survey of the main ideas and results.   The current method for inverting the divergence operator generates many unnecessary terms by integrating in all directions simultaneously. As a result, symbolic algebra packages create over-complicated representations of conservation laws, making it difficult to obtain efficient conservative finite difference approximations symbolically. A new approach resolves this problem by using partial Euler operators to construct near-optimal representations. The talk explains this approach, which was developed during the GCS programme.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons