skip to content
 

Quantum f-divergences in von Neumann algebras

Presented by: 
Fumio Hiai Tohoku University
Date: 
Thursday 26th July 2018 - 14:45 to 15:30
Venue: 
INI Seminar Room 1
Abstract: 
This talk is a comprehensive survey on recent developments of quantum divergences in general von Neumann algebras, including standard f-divergences, maximal f-divergences, and R\'enyi type divergences, whose mathematical backgrounds are Haagerup's L^p-spaces and Araki's relative modular operator. Standard f-divergences were formerly studied by Petz in a bit more general form with name quasi-entropy, whose most familiar one is the relative entropy initiated by Umegaki and extended to general von Neumann algebras by Araki. We extend Kosaki's variational expression of the relative entropy to an arbitrary standard f-divergence, from which most important properties of standard f-divergences follow immediately. We also go into standard R\'enyi divergences (as a variation of standard f-divergences) in some detail, and touch briefly sandwiched R\'enyi divergences in von Neumann algebras, which have recently been developed by Jen\v cov\'a and Berta-Scholz-Tomamichel. Finally, we treat maximal f-divergences and discuss their definition, integral expression, and comparison with standard f-divergences. This talk is dedicated to the memory of D\'enes Petz.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons