skip to content
 

Bayesian model calibration for generalized linear models: An application in radiation transport

Presented by: 
Derek Bingham Simon Fraser University
Date: 
Thursday 12th April 2018 - 13:30 to 14:30
Venue: 
INI Seminar Room 1
Abstract: 
Co-author: Mike Grosskopf (Los Alamos National Lab)

Model calibration uses outputs from a simulator and field data to build a predictive model for the physical system and to estimate unknown inputs. The conventional approach to model calibration assumes that the observations are continuous outcomes. In many applications this is not the case. The methodology proposed was motivated by an application in modeling photon counts at the Center for Exascale Radiation Transport. There, high performance computing is used for simulating the flow of neutrons through various materials. In this talk, new Bayesian methodology for computer model calibration to handle the count structure of our observed data allows closer fidelity to the experimental system and provides flexibility for identifying different forms of model discrepancy between the simulator and experiment.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons