skip to content
 

Uncertainty Quantification with Multi-Level and Multi-Index methods

Presented by: 
Raul Fidel Tempone King Abdullah University of Science and Technology (KAUST)
Date: 
Thursday 8th February 2018 - 14:30 to 15:30
Venue: 
INI Seminar Room 1
Abstract: 
We start by recalling the Monte Carlo and Multi-level Monte Carlo (MLMC) methods for computing statistics of the solution of a Partial Differential Equation with random data. Then, we present the Multi-Index Monte Carlo (MIMC) and Multi-Index Stochastic Collocation (MISC) methods. MIMC is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the MLMC method first described by Heinrich and Giles. Instead of using first-order differences as in MLMC, MIMC uses mixed differences to reduce the variance of the hierarchical differences dramatically, thus yielding improved convergence rates. MISC is a deterministic combination technique that also uses mixed differences to achieve better complexity than MIMC, provided enough regularity. During the presentation, we will showcase the behavior of the numerical methods in applications, some of them arising in the context of Regression based Surrogates and Optimal Experimental Design. Coauthors: J. Beck, L. Espath (KAUST), A.-L. Haji-Ali (Oxford), Q. Long (UT), F. Nobile (EPFL), M. Scavino (UdelaR), L. Tamellini (IMATI), S. Wolfers (KAUST) Webpages: https://stochastic_numerics.kaust.edu.sa https://sri-uq.kaust.edu.sa
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons