skip to content

The zig-zag and super-efficient sampling for Bayesian analysis of big data

Presented by: 
Gareth Roberts University of Warwick
Monday 15th January 2018 - 16:10 to 16:55
INI Seminar Room 1
Standard MCMC methods can scale poorly to big data settings due to the need to evaluate the likelihood at each iteration. There have been a number of approximate MCMC algorithms that use sub-sampling ideas to reduce this computational burden, but with the drawback that these algorithms no longer target the true posterior distribution. The talk will discuss a new family of Monte Carlo methods based upon a multi-dimensional version of the Zig-Zag process of (Bierkens, Roberts, 2016), a continuous time piecewise deterministic Markov process. While traditional MCMC methods are reversible by construction the Zig-Zag process offers a flexible non-reversible alternative. The dynamics of the Zig-Zag process correspond to a constant velocity model, with the velocity of the process switching at events from a point process. The rate of this point process can be related to the invariant distribution of the process. If we wish to target a given posterior distribution, then rates need to be set equal to the gradient of the log of the posterior. Unlike traditional MCMC, Zig-Zag process can be simulated without discretisation error, and give conditions for the process to be ergodic. Most importantly, I will discuss two generalisations which have good scaling properties for big data: firstly a sub-sampling version of the Zig-Zag process that is an example of an exact approximate scheme; and secondly a control-variate variant of the sub-sampling idea to reduce the variance of our unbiased estimator. Very recent ergodic theory will also be described.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons