skip to content

Computational models of the heart: Why they are useful, and how they would benefit from UQ

Presented by: 
Richard Clayton University of Sheffield
Thursday 11th January 2018 - 16:00 to 17:00
INI Seminar Room 1
Normal and regular beating of the human heart is essential to maintain life. In each beat, as wave of electrical excitation arises in the heart's natural pacemaker, and spreads throughout the rest of the heart. This wave acts as a signal to initialise and synchronise mechanical contraction of the heart tissue, which in turn generates pressure in the chambers of the heart and acts to propel blood around the body. Models have been developed for the electrical and mechanical behaviour of the heart, as well for blood flow. In this talk I will concentrate on models of electrical activation because failures in the initiation and normal propagation of electrical activation can result in a disruption of normal mechanical behaviour, and underlie a range of common heart problems. Models of electrical activation in both single cells and in tissue are stiff, nonlinear, and have a large number of parameters. Until recently there has been little interest in how uncertainty in model parameters and other inputs influences model behaviour. However, the prospect of using these models for critical applications including drug safety testing and guiding interventions in patients has begun to stimulate activity in this area.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons