skip to content
 

Proof Assistants: From Symbolic Logic To Real Mathematics?

Presented by: 
Larry Paulson University of Cambridge
Date: 
Monday 10th July 2017 - 14:30 to 15:30
Venue: 
INI Seminar Room 1
Abstract: 

Mathematicians have always been prone to error. As proofs get longer and more complicated, the question of correctness looms ever larger. Meanwhile, proof assistants — formal tools originally developed in order to verify hardware and software — are growing in sophistication and are being applied more and more to mathematics itself. When will proof assistants finally become useful to working mathematicians?
Mathematicians have used computers in the past, for example in the 1976 proof of the four colour theorem, and through computer algebra systems such as Mathematica. However, many mathematicians regard such proofs as suspect. Proof assistants (e.g. Coq, HOL and Isabelle/HOL) are implementations of symbolic logic and were originally primitive, covering only tiny fragments of mathematical knowledge. But over the decades, they have grown in capability, and in 2005, Gonthier used Coq to create a completely formal proof of the four colour theorem. More recently, substantial bodies of mathematics have been formalised. But there are few signs of mathematicians adopting this technology in their research.
Today's proof assistants offer expressive formalisms and impressive automation, with growing libraries of mathematical knowledge. More however must be done to make them useful to mathematicians. Formal proofs need to be legible with a clear connection to the underlying mathematical ideas. 

Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons