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One main example

The Geometric KPZ is the most natural stochastic evolution on
loop space. The system of equations in local coordinates is given by

Opu® = O2u™ + TG, (u) Oxu’Ou” + o (u); -
where

@ the &; are independent space-time white noises.
o the I'G are the Christoffel symbols.

@ the o; are a collection of smooth vector fields on the manifold.



Main issues

@ Give a meaning to a singular SPDE: ill-defined distributional
products.

@ Are there notions of solution that are covariant under changes
of coordinates?

@ Are there notions of solution that, in law, depend only on
g% (u) = a?(u)a,@(u) rather than on the arbitrary choice of
vector fields ;7

Good algebraic structures are needed for answering these questions.



A perturbative expansion

Oru = O2u+ (Ogu)® + &, v =0%v+¢

Then v:K*fecéf’i and we look at u = v + w where w € C*
witha>%.
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A perturbative expansion

Oru = O2u+ (Ogu)® + &, v =0%v+¢

Then v:K*fecéf’ﬁ and we look at u = v + w where w € C*
witha>%.

Orw = 2w + M2 + 2 MR (ew) + (Ow)?.
We go on
v=na+nY+w, w=nY¥Y+w.

This expansion is not sufficient: the equation for the reminder
needs a special treatment.



Construction of the decorated trees T

We put constraints of each nodes depending on the non-linearities.
For example,

T1 T1 T2

(Ou)2+¢6—T={o,XX|, V ir,meT keN}

F(u)e — T ={Xko, X N\ 7€ T, keN}.

Weset T ={Xk | :7¢€ T, ke N2}



A new Taylor expansion

We obtain a local expansion of the solution u. by recentering these

monomials around a point x

ue(y) = S (T7) (e, Oxue) (MO T)(y) + r(x, ).

Te'f

For the KPZ equation, we have
us(y) = u(x) + (I_I(e)ox I_I(E)CY) )+ r(x,y),
with

(MO (y) = (K % &)(y) = (K*E)(x), & = 0- % £



Two renormalisations

Positive renormalisation Negative renormalisation

@ Recentering procedure @ Renormalisation group R
(Hopf algebra). Let

@ Smooth model (M, I'yy), for
M:T—=T,MeR.

every decorated tree T,

(M) (y) < |y — x|dee™. @ Action onto the model
M M
@ Structure group G, I',, € G (M, My )-
(Hopf algebra). @ Action onto the equation
’ (Pre-Lie Structure).

Co-interaction
I'I)’Y’ =M, on some Tox, T C Tex.




Abstract Taylor expansion

Expansion of ¢ € C*> around 0:
p(y) = 9(0) =y (0) = r(y),  Ir(y)l S Iyl*.

Cut of one decorated edge:

AR
Ao B ®o+o®o +01



Recentering monomials

Take T the linear span of the abstract polynomials {X*, k € N},
( e = X¥). It is a Hopf algebra with 1 = X© and:
@ The multiplicative coproduct A' is given by
AX=Xo1+10X, AXx" =3 (7)xkexk
®1+1®X, kz;) <k> ®

o Co-unit 1*: 1*(Xk) = 1,.
@ Antipode A is given by A1 =1, AX = —X.
e Structure group is isomorphic to R: T, Xk = (X + g(X))k.



Negative renormalisation

We are looking at the renormalised integral with the heat kernel
and a mollifier o.:

I(y) = / Ky — 2)0P(y — 2) (¢(2) — (y) — (2 = y)¢(y)) dz,

where o(y — 2) = (0 * 0:)(y — 2) = E(&(2)&(y)).

Extraction of one subtree:

wVég J\[& j : :
[ ] [} [} 1 o
A Kv e _ 1 ® Kst + K\/fs Q I‘P + K\ /& ® ISD 4 ( . )



Notations

1 4> 03 la b1 by A3 Ly
o Let T1 = r and T, = f ,then T1- T, = f i
PTy PTa PTy P2
01 b b3 Ly
and T1 * T2 =
p

@ 7 linear span of decorated trees.
@ 7, linear span of decorated trees with positive degree.
@ 7_ linear span of negative decorated forests.



Co-actions
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There are Taylor expansions on the blue edges.



Two Hopf algebras in co-interaction

Theorem (B., Hairer, Zambotti, 2016)

© The algebra T, endowed with the product x and the
coproduct At is a Hopf algebra. Moreover AT turns T into a

right comodule over T .

@ The algebra T_ endowed with the product - and the coproduct
I~ is a Hopf algebra. Moreover X~ turns T into a left
comodule over T_.

© They co-interact.




Co-interaction
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@ Let consider a subforest A= {71, 7}
@ Admissible cuts E = {e;, ex} such that Ex N E = ().



Extraction then cuts
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Cuts then extraction
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Extended structure 7ex

The same cut is performed in a different order:
b b b3 U5 lg 7 U3
\ AR AVARN / b6t

The length of the Taylor expansion may differ.



Extended structure 7ex

The same cut is performed in a different order:

ﬁl 52 53 55 £6 67 68

w/° 4.4\/' '\/62 06 by ls Lg

€2
1 2 deg 11 deg T
€1 €1
p p

The length of the Taylor expansion may differ. We need to add an
extra information: deg 71 and deg 7».



Two groups

We set

G :={geT{: g(n+n)=2g(n)g(n), Vr,ne T}
G ={eT:Umn m)=Lm)lr), V11,2 € T_}

I_Iz — I_Iz,\/lg7

where M, = (N ® f,)AT for some f, € G and M, = (g @ id) A",




Renormalised equation

Theorem (B., Chandra, Chevyrev, Hairer 2017)

There exist some constants (¢

7.)reT_ such that the renormalised
equation for u. is given by

6tu azua + rﬁ’Y(UE) Ox uﬁngﬂ + Uia(ut?)g:(a)

+ Z QE (ue,a ug) .

TET_

A possible choice of these constants called BPHZ renormalisation is

= E(N®©A_7)(0).

Q’




Application of Pre-Lie structures

We consider the space of decorated trees as a 2-pre-Lie algebra
with generators G = {-,o;} and the following two grafting operators:

1 1

o, N = é\/“‘ >, o, N/ = Cl\/“‘ >

@ Derivation of the renormalised equation. First used in the
framework of rough paths in [BCFP17] then extended to
singular SPDEs in [BCCH17].

@ Symmetry properties.



Computation of T¢ 7

We define 7 — (T ,7)(x, v) as the unique 2-pre-Lie morphism
satisfying:

T?,O’(Oi) = O-ia7 ?,a(') = rgy‘/ﬁvw

d

TRo(mnm) = Tr (1) g TR ().
o B8 d o

Tr,o(TlfW?) = TFU(TI)T r,a(7'2)-

9 Vﬁ

Some examples of coefficients:
¢, (P) = o 07, ?,g(k%) =00/ 030,07,

%o ) = 20,0,T3,0; 0, 0.0/

£
ol



Symmetry Properties

@ Space Tyeo! @ (Tro7) = Tor poT-
@ Space Tie: TroT = TrsT.

@ Space Toom: @ (TroT = Trs7) = TorgoT — Tor,psT-

The spaces 7,., and Ty, can be characterised as kernels of
"deformed" 2-pre-Lie infinitesimal morphisms.

Proposition (B., Gabriel, Hairer, Zambotti 2018+)

One has Tootn = Taeo + Treo-




