
The Lean HoTT library

Floris van Doorn

Department of Philosophy
Carnegie Mellon University

github.com/leanprover/lean2

7 July 2017

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 1 / 23

github.com/leanprover/lean2


The Lean Theorem Prover

Lean is an interactive theorem prover announced in 2015.

It is developed principally by Leonardo de Moura at Microsoft Research,
Redmond.

It is open source, released under a permissive license, Apache 2.0.

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 2 / 23



Lean 2 vs Lean 3

The newest version — Lean 3 — doesn’t support HoTT (yet?).

The HoTT library is actively developed in Lean 2, an older but stable
version.

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 3 / 23



The Lean Theorem Prover

Notable features:

implements dependent type theory

written in C++, with multi-core support

small, trusted kernel with multiple independent type checkers

standard and HoTT instantiations

powerful elaborator

can use proof terms or tactics

Emacs mode with proof-checking on the fly

browser version runs in javascript

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 4 / 23



Lean’s kernel

Lean’s kernel for HoTT implements dependent type theory with

a hierarchy of (non-cumulative) universes:
Type.{0} : Type.{1} : Type.{2} : Type.{3} : ...

universe polymorphism:
definition id.{u} {A : Type.{u}} : A → A := λa, a

dependent products: Πx : A, B

inductive types (à la Dybjer, constructors and recursors)

There are multiple reference checkers with about 1500− 2000 lines of
code.

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 5 / 23



Lean’s kernel

The kernel is smaller and simpler than those of Coq and Agda.

The kernel does not contain

a termination checker

fixpoint operators

Pattern matching

coinductive types

inductive-inductive or inductive-recursive types

universe cumulativity

the eta rule for records

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 6 / 23



HITs and UA

In addition to the kernel, you need to trust:

the univalence axiom

two higher inductive types: quotients and truncations (as a kernel
extension).

HIT quotient (A : Type) (R : A → A → Type) : Type :=

| i : A → quotient A R

| e : Π{x y : A}, R x y → i x = i y

We no not use type-in-type or any resizing rules.

Simplicial and cubical sets should model Lean.

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 7 / 23



HoTT mode

The quotient can define many HITs:

the pushout, hence also the suspension, smash, join, spheres, . . .;

sequential colimits;

HITs with 2-constructors, such as the torus and Eilenberg-MacLane
spaces K(G, 1).

the propositional truncation (vD);

(not formalized) n-truncations (Rijke) and certain (ω-compact)
localizations (Rijke, vD);

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 8 / 23



Lean’s elaborator

Lean has a powerful elaborator that handles:

implicit universe levels

first-order and higher-order unification

computational reductions

overloading

coercions

type class inference

Definitions by pattern matching

tactic proofs

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 9 / 23



Pattern matching

Definitions like these are compiled down to recursors:

definition tail {A : Type} :

Π{n}, vector A (succ n) → vector A n

| tail (h :: t) := t

definition zip {A B : Type} :

Π{n}, vector A n → vector B n → vector (A × B) n

| zip nil nil := nil

| zip (a::va) (b::vb) := (a, b) :: zip va vb

definition diag : Π{n}, vector (vector A n) n → vector A n

| diag nil := nil

| diag ((a :: v) :: M) := a :: diag (map tail M)

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 10 / 23



Calculational proofs

∑
(a,b):Σa:AB(a)

C(a) '
∑

(a,c):Σa:AC(a)

B(a)

definition sigma_assoc_comm_equiv {A : Type} (B C : A → Type)

: (Σ(v : Σa, B a), C v.1) ' (Σ(u : Σa, C a), B u.1) :=

calc

(Σ(v : Σa, B a), C v.1)

' (Σa (b : B a), C a) : sigma_assoc_equiv

... ' (Σa (c : C a), B a) : sigma_equiv_sigma_right

(λa, !comm_equiv_nondep)

... ' (Σ(u : Σa, C a), B u.1) : sigma_assoc_equiv

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 11 / 23



Example tactic proof

variable (P : S1 → Type)

definition circle.rec_unc (v : Σ(p : P base), p =[loop] p)

: Π(x : S1), P x :=

begin

intro x, cases v with p q, induction x,

{ exact p },

{ exact q }

end

definition circle_pi_equiv

: (Π(x : S1), P x) ' Σ(p : P base), p =[loop] p :=

begin

fapply equiv.MK,

{ intro f, exact 〈f base, apd f loop〉 },

{ exact circle.rec_unc P },

{ intro v, induction v with p q, fapply sigma_eq,

{ reflexivity },

{ esimp, apply pathover_idp_of_eq, apply rec_loop }},

{ intro f, apply eq_of_homotopy, intro x, induction x,

{ reflexivity },

{ apply eq_pathover_dep, apply hdeg_squareover, esimp, apply rec_loop }}

end

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 12 / 23



The HoTT library

The library is separated into two repositories, the HoTT library and the
Spectral repository.1

The main goal is to explore and formalize synthetic homotopy theory.

Lines of code: (rounded)

Library files blank comment code

HoTT-library 168 8700 3600 32800

Spectral 57 2600 2000 10900

Contributors: vD, Jakob von Raumer, Ulrik Buchholtz, Jeremy Avigad,
Egbert Rijke, Steve Awodey, Mike Shulman and others.

1https://github.com/cmu-phil/Spectral
Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 13 / 23

https://github.com/cmu-phil/Spectral


Synthetic homotopy theory

The library contains:

Freudenthal suspension theorem

Whitehead’s Theorem

Seifert-Van Kampen theorem

long exact sequence of homotopy groups

complex and quaternionic Hopf fibration

πk(Sn) for k ≤ n and π3(S2).

adjunction between smash and pointed maps.

Cohomology theory

The Serre Spectral sequence (almost!)

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 14 / 23



Synthetic homotopy theory

The library contains:

Freudenthal suspension theorem

Whitehead’s Theorem

Seifert-Van Kampen theorem

long exact sequence of homotopy groups

complex and quaternionic Hopf fibration

πk(Sn) for k ≤ n and π3(S2).

adjunction between smash and pointed maps.

Cohomology theory

The Serre Spectral sequence (almost!)

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 14 / 23



Synthetic homotopy theory

Given a pointed map f : X → Y . Then the following is a long exact
sequence:

π0(Y )π0(X)π0(F )

π1(Y )π1(X)π1(F )

π2(Y )π2(X)π2(F )

...

π0(f)

π0(p1)

π0(δ)

π1(f)

π1(p1)

π1(δ)

π2(f)

π2(p1)

Here F is the fiber of f and p1 is the first projection.

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 15 / 23



Synthetic homotopy theory

The Hopf fibration (by Ulrik Buchholtz):

variables (A : Type) [H : h_space A] [K : is_conn 0 A]

definition hopf : susp A → Type :=

susp.elim_type A A

(λa, equiv.mk (λx, a ∗ x) !is_equiv_mul_left)

definition hopf.total : sigma (hopf A) ' join A A

definition circle_h_space : h_space S1

definition sphere_three_h_space : h_space (S 3)

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 16 / 23



Synthetic homotopy theory

Smash is adjoint to pointed maps:

definition smash_adjoint_pmap (A B C : Type∗) :

ppmap (A ∧ B) C '∗ ppmap B (ppmap A C)

definition smash_assoc (A B C : Type∗) :

A ∧ (B ∧ C) '∗ (A ∧ B) ∧ C

definition smash_assoc_natural

(f : A →∗ A′) (g : B →∗ B′) (h : C →∗ C′) :

psquare (smash_assoc A B C) (smash_assoc A′ B′ C′)
(f ∧→ (g ∧→ h))((f ∧→ g) ∧→ h)

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 17 / 23



Synthetic homotopy theory

structure ptruncconntype (n : N−2) : Type :=

(A : Type∗)
(H1 : is_conn n A)

(H2 : is_trunc (n+1) A)

notation cType∗[n] := /- category on ptruncconntype n -/

definition Grp_equivalence_cptruncconntype :

Grp 'c cType∗[0]

definition AbGrp_equivalence_cptruncconntype (n : N) :

AbGrp 'c cType∗[n+1]

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 18 / 23



Serre Spectral Sequence

Theorem

Given a simply connected pointed type (X,x0), a family F : X → Type
and a group G. Then

Hp(X,Hq(F (x0);G)) =⇒ Hp+q(Σx:X , F (x);G).

This means that the cohomology group Hp+q(Z;Y ) is “built up from”
Hp(X,Hq(F ;Y )) in some technical way.

Parametrized version in Lean: (95+% done)

variables {X : Type} (F : X → Type) (Y : spectrum)

(s0 : Z) (H : is_strunc s0 Y)

definition serre_convergence :

(λp q, H^-p[(x : X), H^-q[F x, Y]]) =⇒g

(λn, H^-n[Σ(x : X), F x, Y])

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 19 / 23



Extra: pointed maps

A pointed map from A : Type∗ to B : Type∗ is a map f : A→ B which
respects the basepoint: f0 : f(a0) = b0.

A pointed dependent map from A : Type∗ to B : A→ Type∗ is a map
f : Πa:AB(a) such that f0 : f(a0) = b0.

A more general pointed dependent map from A : Type∗ to B : A→ Type
with point b0 : B(a0) is a map f : Πa:AB(a) such that f0 : f(a0) = b0.

Now we can define a pointed homotopy between f and g as an element of
Π∗a:Af(a) = g(a) where f(a0) = g(a0) has basepoint f0 · g−1

0

Advantage: we can define a pointed 2-homotopy between h, k : f ∼∗ g as
h ∼∗ k

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 20 / 23



Extra: pointed maps

A pointed map from A : Type∗ to B : Type∗ is a map f : A→ B which
respects the basepoint: f0 : f(a0) = b0.

A pointed dependent map from A : Type∗ to B : A→ Type∗ is a map
f : Πa:AB(a) such that f0 : f(a0) = b0.

A more general pointed dependent map from A : Type∗ to B : A→ Type
with point b0 : B(a0) is a map f : Πa:AB(a) such that f0 : f(a0) = b0.

Now we can define a pointed homotopy between f and g as an element of
Π∗a:Af(a) = g(a) where f(a0) = g(a0) has basepoint f0 · g−1

0

Advantage: we can define a pointed 2-homotopy between h, k : f ∼∗ g as
h ∼∗ k

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 20 / 23



Extra: pointed maps

A pointed map from A : Type∗ to B : Type∗ is a map f : A→ B which
respects the basepoint: f0 : f(a0) = b0.

A pointed dependent map from A : Type∗ to B : A→ Type∗ is a map
f : Πa:AB(a) such that f0 : f(a0) = b0.

A more general pointed dependent map from A : Type∗ to B : A→ Type
with point b0 : B(a0) is a map f : Πa:AB(a) such that f0 : f(a0) = b0.

Now we can define a pointed homotopy between f and g as an element of
Π∗a:Af(a) = g(a) where f(a0) = g(a0) has basepoint f0 · g−1

0

Advantage: we can define a pointed 2-homotopy between h, k : f ∼∗ g as
h ∼∗ k

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 20 / 23



Extra: pointed maps

A pointed map from A : Type∗ to B : Type∗ is a map f : A→ B which
respects the basepoint: f0 : f(a0) = b0.

A pointed dependent map from A : Type∗ to B : A→ Type∗ is a map
f : Πa:AB(a) such that f0 : f(a0) = b0.

A more general pointed dependent map from A : Type∗ to B : A→ Type
with point b0 : B(a0) is a map f : Πa:AB(a) such that f0 : f(a0) = b0.

Now we can define a pointed homotopy between f and g as an element of
Π∗a:Af(a) = g(a) where f(a0) = g(a0) has basepoint f0 · g−1

0

Advantage: we can define a pointed 2-homotopy between h, k : f ∼∗ g as
h ∼∗ k

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 20 / 23



Extra: pointed maps

A pointed map from A : Type∗ to B : Type∗ is a map f : A→ B which
respects the basepoint: f0 : f(a0) = b0.

A pointed dependent map from A : Type∗ to B : A→ Type∗ is a map
f : Πa:AB(a) such that f0 : f(a0) = b0.

A more general pointed dependent map from A : Type∗ to B : A→ Type
with point b0 : B(a0) is a map f : Πa:AB(a) such that f0 : f(a0) = b0.

Now we can define a pointed homotopy between f and g as an element of
Π∗a:Af(a) = g(a) where f(a0) = g(a0) has basepoint f0 · g−1

0

Advantage: we can define a pointed 2-homotopy between h, k : f ∼∗ g as
h ∼∗ k

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 20 / 23



Advantages of Lean

Powerful unification allows you to make higher-order arguments
implicit

Small kernel

Very large library for synthetic homotopy theory

Fast elaborator and type-checker

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 21 / 23



Disdvantages of Lean

Powerful unification causes degration of error messages

No active development of the source code

Need better tools to print/simplify the goal you are proving

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 22 / 23



Thank you

Floris van Doorn (CMU) The Lean HoTT library 7 July 2017 23 / 23


